1

&

: unclassified
: SECUNITY CLASSIFICATION OF THIS PAGE (When Dats Entered)
REPORT DOCUMENTATION PAGE BEF%%’E%’SS;EE%};}?:ORM
. REPORT NUMBER 2. GOVY ACCHESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
86-32-03
4. TITLE (and Subtitie) 5. TYPE OF REPORT & PERIOO COVERED
UW/NW VLSI Consortium Technical, interim

Semiannual Technical Report No. #3

S. PERFORMING ORG. REPORY NUMBER

7. AUTHOR(e) 3. CONTRACT OR GRANT NUMBER(e)

MDA903-85-K-0072
UW/NW VLSI Consortium ARPA-4563, #2

Code 5D30

OGRAM ELEMENT, PROJECT, TASK
€A & WORK UNIT NUMBERS

9. PERFORMING ORGANIZATION NAME ANO AOORESS 10. :
UW/NW VLSI Consortium, Dept. of Computer Science
University of Washington, FR-35
Seattle, WA 98195

1. CONTROLLING OFFICE NAME ANO AOORESS 12. REPORY OATEK
DARPA - ISTO December, 1986
1400 Wilson Boulevard 13. NUMBER OF PAGES
Arlington, VA 22209 72

V4. MONITORING #GENCY NAME & AOORESS(I! diiferent Irom Controlling Otlice) 1S. SECURITY CLASS. (of thie repeort)
ONR unclassified
University of Washington
315 University District Building B B UL A TIGRY BOWGPRAINS

1107 NE 45th St., JD-16, Seattle, WA 98195
6. OISTRIBUTION STATEMENT (of this Report)

Distribution of this report is unlimited.

X
i
3
N
]
=
!}
-
4
o
o
l
1
k|
i
L]
.
1
i
\t
.
-\'
)
>
S
i
]

AD-A176 505

DTIC

FEB O 9 1987

17. DISTRIBUTION STATEMENT (of the sdetrect entered in Binck 20, {1 difierent freen R

)

.

i 18. SUPPLEMENTARY NOTES K D

:: 19. KEY WOROS (Cantinue on reveree o!de If necessary and identity by block number)

i %;3 VLSI Design Generators, CMOS, PLA, energy complexity, NC, CFL, MOS,

- 3 VLSI Consortium

: (>

i

. Lt
::—:" 20. ABSTRACT (Continue on reveree eide Il necassary and identify by block number)
o This document reports on the research activities of the University of
e Washington/Northwest VLSI Consortium for the period of Marcy 18, 1986
e to December 10, 1986 under sponsorship of the Defense Advanced Research

Yy Projects Agency, under contract number MDA903-85-K-0072, program code
number 5D30.

DD , :‘A’:‘!n 1473 toOITION OF ' NOV 63 1S OBSOLETE

$/N 0102-LF-014-6601 unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Dets Bntered)

»e

s L e e e 0 4 W i Y i RN P 7 WA R e T 0GP I e P T T)

Ay My T Rl S oS T o TR e e w s

B e

UW/NW VLSI CONSORTIUM

P ———

Semiannual Technical Report No. 3
University of Washington

! December 10, 1986
r TR# 86-32-03

i Reporting Period: 18 March 1986 to 10 December 1986
]

Principal Investigator: Lawrence Sryder

Sponsored by
| Defense Advanced Research Projects Agency(DoD)
‘ ARPA Order No. 4563/2
Issued by Defense Supply Service-Washington
Under Contract #MDA903-85-K-0072
(Program Code Number: 5D30)

The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency of the U.S. Government.

T RN T T R o M L e LAl L B L L A P O e M L L T e L €0 LS

R R I R O R R R EEEEIREEEE=———————

Contents
1 Executive Summary 1 a
2 Progress on Design Generators 2 E
3 Energy Analysis of VLSI Circuits 3 ;
4 Hercules: A Power Estimator for MOS VLSI Circuits 4 E
5 The Pyramid Machine 5 !
6 VLSI Tools Release 6 §
7 Educational Offerings 6 ;
8 Progress on the Network C Simulation System 7
!
Appendices
A: Declarative Descriptions for VLSI Generators !
B: The Energy Complexity of Transitive Functions {

C: Energy Complexity and Delay Comparison of Dynamic and
Static PLA Design Styles

2 ¥ TN W W e g P

Accesion For T
NTIS CRA&I v(y
DTIC TAB [;
Unanrounced I8 %
Justification ! D
e -
BY e o) "
Distributior: | ’
S e e P L | ‘

Avallablity Codes i

e —— - - — — i |I

| Avail ardfor ,

Dist Special |

A

S

/
R o L B o T T A N R AT 0 T AT LR [i Ly L 040 o T O T LA 4 (0 e

1 Executive Summary

This document reports on the research activities of the UW/NW VLSI Consortium for the pe-
riod 18 March 1986 to 10 December 1986 under sponsorship of the Defense Advanced Research
Projects Agency. The applicable contract for this period is MDA 903-85-K-0072. On J anuary

1, 1986 the UW/NW VLSI Consortium will change its name to the Northwest Laboratory for
Integrated Systems.

b

One of the outstanding contributions during this reporting period has been our work in the
energy complexity analysis of VLSI designs. An extensive theoretical analysis has been made
of the energy requirements of several classes of functions, in particular transitive and one-
switchable. A surprising result of this work is that, for systolic implementations of some of
these functions, the average case energy consumption is of the same order as worst case. For
this reason the energy optimization of many datapath systolic systems gives negligible returns.
Another work in this area analyzes the speed and energy tradeoffs of dynamic and static PLA
designs within various application domains. -

A major project of this reporting period has been the definition of a model for generator
construction. the intent of the model is to provide a concise representation that captures the
fundamental structural and functional properties of the circuit. With this representation a
variety of output descriptions may be derived.

During the past six months the model has been refined and a language parser written. Work is

currently underway on the backend programs that analyze the model and produce schematics,
layouts, and functional descriptions. ~

The importance of generating high quality circuits which are free of noise and metal migration
problems has prompted us to investigate means of analyzing the current carrying capacities of
power bus structures in MOS designs. We have begun work on a tool called Hercules that will

perform such an analysis and inform the designer of excessive current densities and voltage
drops.

Progress continues on the Network C (NC) simulation system. Major revisions have been
made in both the MOS models and numerical procedures since the system was described in
the last semiannual report. The system is now adding significant simulation capability to the
Consortium toolset; our intent is to include it in a forthcoming release of our software.

The Consortium continues to distribute a CMOS/nMOS design system formed of tools devel-
oped at the UW as well as UC Berkeley, CMU, and MIT. This distribution benafits the VLSI

community; it also provides the Consortium with useful feedback on the effe :tiveness of the
tools.

3

.
B s e oL I G e e

. 3 . e Bt s o
AL N A e AR L T L el B "o ST ST B AU e o WO el B R H"_.‘J'_ o __-(‘..J'_‘-t O 1‘,“3 _'{"{.‘ “ A A A e :
T e e e L a4 e e e o e o (o TR T (L S bl)

DR L T

a3
*
A,
o

1,
.
K

e

R ———

T T ——

2 1 T R 2w X B W WM

s.’:

5

3 2 Progress on Design Generators

(W. Winder, R. Nottrott, M. Liem, J. Baer, L. Snyder, L. McMurchie)

'3

f Based on a model for design generator construction (see Appendix A, “Declarative Descriptions
:.' ...""), a compiler has been implemented which analyzes the declarative descrintion of a genera-
i tor instance. The compiler and its supporting software have been implemented in a modular
: fashion to accommodate layout, schematic, mixed-mode and functional outputs. In the follow-

s ing discussion the programs analyzing the declarative descriptions and producing outputs are

".. called backend programs. The programs which interact with the user of a generator to produce
y! the declarative description of an instance are called frontend programs.

. Currently there exist backend programs for both mixed-mode and schematic outputs. Both
] are based on leaf cells containing PostScript! commands The output files contain these leaf
\ cells plus placement commands that orient the leaf cells according to the structure specified
. in the declarative description. When sent to a device capable to interpreting PostScript code,
l‘ a diagram of the schematic or mixed mode representation will be produced. Such devices

currently include a laser printer and a graphics terminal.

The process of translation of the generator model into an output by the backend program
occurs in four steps: initialization and control, parsing, table building and semantic analysis.
The backend software implemented so far includes approximately 7,500 lines of new source
code plus 2,500 lines of code adapted from other tools.

P

Parsing is implemented via a function that creates a parse tree of the instance of the grammar
described by the notation. The parsing function is created from the grammar aescribed in a
grammar file. This file contains the description of all legal notation instances for all generator
outputs (schematic, layout, mixed and functional), and as such, will be used by all backend
processes. The grammar file is inputed to a YACC to YACC translator?, which adds YACC
actions to the grammar that will cause the parse tree to be built.

il W B e T T
el ate s s

™ A Vi 1 V2 PN .
Yoot Tela" LT

A lexical analyzer accompanies the parsing function The parsing function acts as described
in the YACC manual, getting tokens from the lexical analyzer as needed, in an attempt to
recognize grammar production rules. Details of operation are, as far as possitle, ieft to the
called function.

-

i When parsing is complete and all tables have been built, analysis begins. Ir the schematic
J and mixed mode backends, analysis consists of drawing each leaf cell in the correct place on
! a virtual page. This process requires the evaluation of symbols. If the symbol is a leaf cell, a
A PestScript function is called to draw it. If the symbol is a composite, the geometric expression
’ describing the symbol is decomposed. In this decomposition, evaluzation of a symbol may cause
: recursive calls. At the end of the process, the vi:tual page is inapped onto the physical page.

.~

The model for the decoder given in Appendix A has been im:lemen ed to the point that the

'PostScript is a graphics page description language. PostScript is a trademark of Adobe Systems Incorporated.
2YACC is a compiler generation program available on most UNIX systems.

B s e e g
[\

o N T A g Ty R o O PR P PN DT
T At v e e s A i s N L L e B A T T T

LR

»
a

x

s

. . e
E b i R

28

L oot

s PR
.-.-‘- - e &

e

e S S o B

I I T M D e S N

=SS

X

> 2 e x

decoder schematic and mixed mode diagrams can be generated. Similar work for the multiplier
is in preparation.

The frontend programs that interact with the user of a generator to create the generator model
from the user specifications are located in the requirements definition phase.

3 Energy Analysis of VLSI Circuits

(L. Snyder, A. Tyagi)

Due to engineering limitations on heat dissipation from a planar chip and a general trend

towards energy conservation, energy efficiency of VLSI circuits has become an important issue
in VLSI algorithm design.

Power dissipation has long been recognized as a limitation on nMOS designs. Despite the
lower energy requirements of CMOS designs relative to nMOS, energy dissipation is an issue
in CMOS as well. In the first place circuit designers tend to overdrive CMOS devices to
obtain higher speeds. Additionally, in CMOS the power consumption is a direct function of

the system frequency. Thus to be energy-conscious, care needs to be taken in the design of
high performance CMOS architectures.

There are two phases to designing an energy efficient VLSI circuit. In the first phase one tries
to understand the theoretical limits (complexity). This helps the designer set realistic goals
for a design. For example, with energy complexity of at least n squared, an implementation
linear in energy consumption would not be possible. In the second phase one tries to obtain a
design as close as possible to the lower bound derived in the first phase. Of course none may
exist that achieves that lower bound.

The paper in Appendix B is an attempt in the first direction. The paper analyzes the energy
complexity of a very useful class of functions identified as normal transitive functions. A
function is normal transitive if it embeds a computation of a shifting function. Examples
include multiplication, convolution, shifting, and three-matrix products. The paper shows
that when designing systolic architectures for these functions, it does not pay to worry about
energy optimization, since the worst case and average case energy consumptions are equal.
The trend towards integrating most of the architectural components onto fewer and fewer
chips has encouraged the design of datapath and control components with systolic algorithms
due to their simple communication structure. Thus, our result is useful inasmuch as it frees
the designer from considering energy optimization as one of the objectives of the architectural
design of this class of functions.

Another result of the paper reconfirms the intuitive belief that the designer can trade the
speed of operation with the energy consumption. The paper establishes a lower bound on
the worst-case switching energy for the class of functions called one-switchable. A function is
one-switchable if there exist two input assignments differing in only one bit position, such that,
going from one input assignment to another switches most of the output bits. Thus transitive

3

eV ot } LM R AR B p T TR R R M T AT AU) LGN FAEDEA N 5 7 T R WK
B o O T A € (4 S 0 0 S 20 (L0 0 A 1 1 T,

1 &
-

. Yoy T
-

S e g
et e

{{ &
r.,f;;-{*

-
«’w

Ry
22

ll".
.
s -

x

Fan
-
L

2
14

r s

v ety

?—

N, LA

v te

"
i ok

B

b gat Bl)

o
i,

s A

[e g 4
wid

-+
"

L4
-

LA e 2

S

Ay Ay ALy
g x
P il Ll R

%' e

-

functions are a subset of one-switchable functions. The paper gives a quantitative tradeoff
between speed and energy consumption for such functions.

Once the inherent limits on the energy consumption of a function are understood, one strives
to find the most energy-efficient VLSI circuit implementation for it. The paper in Appendix
C analyzes the energy complexity of a very commonly used VLSI structure, the PLA (This is
a preprint of a paper to be presented at the Stanford VLSI Conference in March, 1987).

In this paper a comparison is made between the energy complexities of the static and dynamic
design styles for a PLA. We show that the average energy consumption of a dynamic PLA
exceeds that of a static PLA. We also show that, on average, a dynamic PLA is faster than a
static PLA. In order to prove these results, we deal with a very general class of PLAs. If we
are allowed to restrict this class, we can do more. In particular, we show that the choice of an
optimal design style for a data path control PLA depends on the degree of parallelism of the
data path. A high degree of parallelism may in fact favor a static designed PLA.

Our results give a mathematical justification (within the limitations of our model) for picl-ine
one design style over the other for a given application domain.

4 Hercules: A Power Estimator for MOS VLST Circuits

(A. Tyagi)

Hercules is a stage-based MOS power estimator. The present CMOS version reports the average
and peak load current due to the charging and discharging of capacitance in the curcuit.
Hercules also repoits the average and peak direct current due to both p and n channel devices
being on during a slowly rising input signal. A tree-like data structure models the Vdd and
ground distribution from the pins to sources/drains of devices. By combining the current
requirements with the power distribution tree, checks can be performed to see if maximum

current densities have been exceeded. Voltage drops from pins to sources and drains can also
be reported.

The salient features of Hercules are as follows:

1. A linear average time algorithm employed for computing current levels is based on stage
decomposition [Ous85) of a CMOS VLSI circuit. A stage is a chain of switches followed
by either an output or a gate. The stages are traced out in a depth-first order enabling
us to deal with the cross-coupled memory elements. The current implementation is an
extension of a t.ming verification program, Crystal [Ous83]. Hence, it supports all the
mechanisms of Crystal for flow specification.

to

An accurate switch-level model of short-circuit current in CMOS inverters and static
circuits is derived. In CMOS circuits, slow input signal edges give rise to short-circuit
current from Vdd to ground. The duration and magnitude of this current depend on the
input signal slope, load and the device gain. All these factors can be encapsulated into

F - s = A A LR 4 4 o Do 28 L TR 1 0 A "
A LA A O P LT D PRt L P PP PR P L R PR CE SR CONE SR s LT E PR EE SR CACUEESIUSE RS 0 F TR PR OE SR PP

o) a single number, the rise time ratio, as observed by Ousterhout [Ous84] in a different
context. The rise time ratio is the ratio of input signal slope to the native output signal
speed. Most of the digital circuits are designed with only a fixed set of load and transistor
sizes. The information about these structures can be extracted from SPICE runs on basic
types of devices occuring in the circuit. Thus this model can predict the short-circuit
current levels to within 20% of SPICE calculations. Ousterhout [Ous84] was the first to
use this fact to model the effective resistances of devices in Crystal.

o Ak L A A A,

& 3. The metal tree idea of Wilson [Wil85] is extended to accomodate multilayer metal and
5;:: loops. Typically, a VLSI circuit does not have many loops in its power distribution

'

metal bus structure. We found that the comb structure, a very compact biconnected
component, is the most common form of loop encountered in power buses. We are able
to deal with them very efficiently using a depth-first search technique.

=

(Ous83] J.K. Ousterhout. Crystal: A Timing Analyzer for nMOS VLSI Circuits. In Proceed-
ings of §rd Caltech Consference on VLSI, Computer Science Press, 1983.

1,
-

[Ous84] J.K. Ousterhout. Switch-Level Delay Models for Digital MOS VLSI. In Proceedings
of 21st Design Automation Conference, ACM-IEEE, 1984,

[Ous85] J.K. Ousterhout. A Switch-Level Timing Verifier for Digital MOS VLSI. IEEE Trans-
actions on Computer Aided Design, July 1985.

[Wil85] J. Wilson. Analysis of Power Requirements inside of nMOS Integrated Circuits. M.S.
Thesis, Computer Science Dept., Oregon Graduate Center, Beaverton, 1985.

5 The Pyramid Machine

(S. Tanimoto, T. Ligocki, R. Ling)

Rapid analysis of images is a requirement in several areas of machine vision, including industrial
parts inspection, visual navigation systems for robots, and medical diagnosis from real-time
imaging devices. While parallel computers exist which are effective in solving some problems
(e.g. large numerical problems), their interconnection networks are not very suitable for image
processing, since much time is spent routing data from one processor to another. Vision
applications would usually be much better served by parallel computers with image-oriented
interconnection networks.

M3 5200 MR l.\i'.;-j,“-,':f" et

» oAk

L

B N
-,.‘J'

a

It is commonly suggested that in order to construct such an architecture, one may assign a
processor to each cell (pixel) of the image and allow the processors to communicate directly with
their immediate neighbors i the array. While such a distribution of processors is an important
K improvement over one processor or a row of processors, it still does not provide much support
for the computation of global (non-local) characteristics of an image. A hierarchical structure

o

LT

i - Fo— - . " k . ¥ AR B i e T, i e ot e P P R B s g, TR R P o,) R M R R

R) afoh ot el o '-‘-'p""\‘-- .- .‘.r‘.'-".,'*- of B T A W D AT CTap iy PRGN {\- - R LA g - o
A > | o s ~ 9 s A PR 1 oW o Lo {

‘)‘i:\‘“;(":“.").'}i';*'. g Vs o B R S SN "ﬂ'i' B S R R O \'J’. PO U U T T e AT Ve A o Wl LT o aTe W T o

5 ey

PR e el s R MRy T K A A Ay A A

i e e

T ——

has been proposed as having most of the advantages of the processor-per-cell arrangement,
while also possessing a capability for global computations.

We have proposed and built a hierarchical image-processing architecture that we call a pyramid
machine®. This machine, being simultaneously parallel and serial, allows gradual formation of
more and more global descriptions of image data in parallel. One advantage of this system is
the multi-resolution data that is implicitly available. Another advantage is the short (logV)
data paths from the pixels to the root of the pyramid. Yet another advantage is that such
operations as median filtering can be efficiently performed.

The prototype pyramid machine recently completed has four levels with 64 processing elements
(PE’s) at the base level. A custom VLSI circuit called the “HCL chip” provides a 4x4 array
of PEs and is used as the basic building block.

The HCL chip is intended to implement a piece of a pyramidal architecture in such a manner
that it can be used in the building of a system of arbitrary size. In order to achieve this goal,
the design required adequate functionality as well as processor density. It seemed clear that
a full custom implementation was the only solution meeting these requirements. The HCL

chip was designed in 4 micron nMOS using the Consortium design system and fabricated by
MOSIS.

6 VLSI Tools Release

Release 3.0 of the Consortium design system has now been distributed to 135 sites. A new
release of software is currently being prepared. It will contain the '86 Berkeley tools (including
Magic) as well as a number of tools developed at the UW. These tools will include a number
of design generators developed under this project as well as Coordinate Free LAP, the layout
language in which these generators have been written. Also included will be the functional
simulation system NC described in section 8.

The new release will be available for a tape charge to Universities, government contractors and
industries affiliated with the Consortium.

7 Educational Offerings

For the fourth year in a row the Consortium offered an intensive class in digital CMOS design.
The course is intended to provide industry engineers with the fundamentals of design and
instruction in the use of CAD software. We view the course as fundamental to technology
transfer between industry and the University research efforts in VLSI design.

3¢A Prototype Pyramid Machine for Hierarchical Cellular Logic”, by S. Tanimoto, T. Ligocki, and R. Ling
(to be published).

o M N £ D T e S0 (0008 5B L

A
.

\: The ceis divided into two parts. During the first three days of lectures and labs participants

learz basic characteristics of MOS devices and use of simulation tools. A second sequence

of lectures and labs covers layout and verification methods.

Twelve students from six local firms and three universities attended the most recent course.

H: Three students elected to do a chip design which will be fabricated in 3 micron CMOS through
i MOSIS.

e_":& A seminar on fault simulation has been organized and will be held on December 18. Promi-
& nent researchers from both universities and industries have been invited to talk about recent
4_ developments as well as the application of fault simulators to industry problems.

o

] 8 Progress on the Network C Simulation System

>

) (W. Beckett)

There have been three areas of development activity for Network C (NC) over the past six
months.

Y ™
l'-

E 1. THE MOS BEHAVIOR CALCULATION.

. The MOS behavior calculation which was presented in the last semiannual report has been
._. reimplemented using a different approach. The previous method used numerical integration to
:-\. compute the response of subcircuits within a MOS system to input stimuli. This process was
}.«.: working reasonably well for circuits with rather large node capacitances (like 2 micron NMOS)
;-t but did not seem to work for circuits with small node capacitances (like 1.25 micron CMOS).
I The problem was that in order to make the integration stable for the small capacitance values,
a small time step had to be used. This small time step, in turn, increased the execution time
o beyond practical limits.

12

2,3 A second problem was that the integration based method could not handle the case of zero

node capacitance. Zero node capacitance does not come up in practice but it is still a useful

modeling abstraction in some cases and it was felt desirable that NC models evaluate this case
correctly.

‘e N
DIPR

It was decided to replace the numerical integration with a general non-linear equation solver
based on Newton’s method. While this approach involves substantially more computation per
time point than numerical integration, it was believed that an order of magnitude reduction

in the number of time points required could be achieved while maintaining an acceptable level
of accuracy.

Practical implementations of Newton’s method usually include some kind of line search along
the Newton direction. This improves both the stability and the performance of the method.
The typical algorithm computes the Newton direction, which requires solving a linear system
(whose coefficient matrix is the Jacobian of the system) for the Newton correction and then

2 e gt e g ¥y 5 > & . 3
Ewr JLPA LI s wf RO ORAT B

{wmas w i M T P BT AL AL\ N e et A e e e e e Ry Ay P LT e T T R RN L W W -_--'L\’—».’.\-‘:.‘nj-ﬁ
e T e e e AN L P e i b W w0)

R R W R v I TN = W N N 2 S SR Ly

moving back along this correction until the norm of the residual vector or right hand side of
the system is reduced. At this point, the Jacobian is recomputed and the process is repeated.

It was considered extremely desirable to avoid this recalculation of the Jacobian in as many
cases as possible since each Jacobian approximation requires n function evaluations where n
is the rank of the system of equations. Consequently the above method based on simple line
searching was replaced with Broyden’s 1965 Method. This method is described in Nonlinear
Programming: Analysis and Methods by Mordecai Avriel, on page 354.

Broyden’s method uses line searching in a similar manner to that described above but when it
is time to obtain a new Jacobian, Broyden’s method computes an approximation to the new
Jacobian from the current Jacobian using the results of function evaluations already computed

during the line search. In other words, you get the new Jacobian without any additional
function evaluations.

Actually, Broyden’s method is even better than indicated above because the updating formula
can be transposed so that it will update the inverse Jacobian directly rather than the Jacobian.
Using the formula in this form means that each successive Newton correction is produced using

a simple matrix multiply rather than by solving a linear system. This is another substantial
time-saver.

The drawback to Broyden’s method is that it requires a good first approximation to the inverse
Jacobian at the solution in order that the series of approximations to the inverse Jacobian
converge. In running several tests of the method on general non-linear systems I have seen a
number of practical cases in which the method can be very slow to converge. Fortunately, in
the case of MOS circuits, the branch relationships are all produced by the same circuit element,
namely the MOS transistor, and the model for this transistor is very nearly tri-linear with very
smooth transitions between the regions. For networks consisting of such well behaved and
gentle circuit elements, Broyden’s method seems to work extremely well.

The following tests were performed using twenty-six transistor master-slave CMOS latch.

Number of time points CPU time
in forecast interval (CYBER 170/750)

New Method 400 17.315
(Newton-Broyden) 200 8.858
100 4.195
40 1.799
Old Method
Numerical Integration 400 4.165
8

3 e B
.............. Y AT Tl AT e R -

-

' ' DT L T, L L L YA A T A 84 T A 4T
"‘\: ‘ \L‘.'\ 1\‘,“‘ o '\h\.'-" sl A\ '(\--"t?.{z‘(-.‘ b R A N By P N":w"{-«’ PTETR R T T TR T e '(3’\ T e T TR T AR
- - & v AL R N LW R L e e % - L 2 e - - ‘s L. e T 5 " 5 - L ¥ i3

If the same number of points are computed for each forecast, the new method is, as expected,
substantially slower than the previous method, in this case about a factor of four. However, in
the case of the integration method, fewer than 400 points produce an unacceptably inaccurate
solution. An acceptable plot was produced using the new method at forty time points per

forecast and in this case the run time is substantially less than the integration method, better
than a factor of two.

2. NEW FOUR PARAMETER TRANSISTOR MODEL.

The simple DC MOS law transistor model previously used by NC has been replaced. The new
model is based on the one described in the Design and Analysis of VLSI Circuits by Glasser
and Dobberpuhl, page 95. For PMOS the NC formulation of this model is given by:

o
j_n
4
1‘. *
<A
g
ﬁ
(s,
C:r
-
1
ﬁ
§

If
a PHIFN = K+T+LOG(ND/NI)/Q
' GAMMA = SQRT(2.0«ESI*Q«ND)/COX
Y T1 = SQRT(VBS + 2.0+PHIFN)
VTE = VTO - GAMMA%(T1 - SQRT(2.0«PHIFN))
0 DELTA = GAMMA/(2.0+T1)
o VDSAT = (VGS-VTE)/(1 + DELTA)
i KS = MU*COX(W/L)/2
X
3 then
3
a Cutoff: VDSAT >= 0
i IDS = -1.0E-12+VDS
,
)
L Linear: VDSAT <= VDS
5
i IDS = -KS#(2+VDSAT - VDS)*(1 + DELTA)*VDS
3,
{
'_2 Saturation: VDSAT > VDS
; ISAT = -KS+VDSAT##2%(1 + DELTA)
]
N
, This model includes a second order drain current correction, DELTA, and the body effect.
:E Also, a slight off resistance has been added.
I Finally, the following empirical correction for channel length modulation in saturation fou:
-3 on page 110 of Glasser and Doberphul is also included.

|
i 9
¥
]

B o L M M o T O L LT N LR Lt D S ST e A L o O O T GG 8 L) e AT

P

%
¥
f:; IDS" = IDS%(1 + (VDS - VDSAT)/(VA + VDSAT))
where VA = EAxL*SQRT(ND/NT) and EA = -5.0.
j}:\ The presence of the off resistance and channel length modulation mean that this transistor has

no region in which its c irrent is independent of the source drain voltage. This improves the
stability of the numerical method since it helps to avoid singular Jacobians.

3. CONTINUOUS TIME SYSTEM ANALYSIS AND EVALUATION.

A new facility has been developed for NC that allows the system to represent and evaluate
models of analog circuits. The new tacility inclndes support for precediiral models of analog
circuit eleru 'ike bipolar vransistors, resistors, capacitors, diodes, and opamps. It also
allows instances of these elemenis to be specified in the elements lists of circuit definitions.

The syntax is the same as that used for all other NC circuijt elements. Within the model
bodies, the declarator

network float analog z;

is used to indicate the terminal of an analog device.

.

y
]

A new circuit analysis routine which is analogous to the MOS circuit analysis routine, collects
closely coupled subnetworks of analog devices together into analog subnetworks. These sub-
networks are evaluated at equally spaced time points by a general non-linear equation solver.
This adds a continuous time computation capability to the main loop of NC which previously
was purely based on discrete event scheduling.

The outputs from the analog subcircuits may drive other types of subcircuits. In turn, the
inputs to analog subcircuits may be taken from other types of subcircuits. It is possible, for
example, to couple the output of a functional level model directly to the input of an analog
circuit level model. The outputs of the functional model are interpreted as ideal voltage sources
in the analog model in this case. It is also possible to conrect things the otler way, in «hich

case, the output node of the analog circuit would appear w0 the functional model sensing it as
a periodic stream of events.

e S O R L L S S S S

The non-linear equation solver used for analog circuit evaluation uses a technique I call residual
sveeping which is described in a paper by H. T. Kung, “The Complexity of Obtaining Starting
Points f~r Solving Operator Equations by Newton’s Method”, which appeared in Analytic
Computational Complexity, J. Trauh, Academic Press, 1976. The idea is that if X is not a
solution to F(X) = 0, then F(X) = R, R being the residual. This being the case, X is a
solution to the system F(X) — R = 0. The family of systems F(X)—k*R=0for kin [0,]]
then contains the system for which a solution is sought but not known (k = 0) and a system
for which the solution is known but not sought (k = 1). The object is to try to move X and
k at the same time until X satisfies F and k = 0. NC sweeps k from 1 to 0 using a Fibonacci
search.

Aty =

”
e

IO e

L
b g

-

o

The importance of this procedure is that when coupling functional and analog models together
| it is possible that the output of the functional model may change abruptly. This will mean that

i 10
i

 — : > LT Tl T G T S RO T T b il i Gt) Vol - AL G R 2 T « R ANLR MWK
A s e L A L b L L L L A I s W M W s A S

T _¥_¥

the last available solution for the analog system, namely the last time point computed, will not
be a good first guess for the computation of the current point since conditions have changed too
drastically. (Note that these changes appear on input nodes which do not have corresponding
terms in the Jacobian). In this kind of situation a conventional Newton implementation is
quite likely to fail to conve. e. The residual sweep is a technique for getting a better first guess

for the current point than just the last point. Indications so far are that the technique works
very well.

TN RRLENE S [o A e S S SR e

With the inclusion of the analog circuit modeling capability, NC achieves closure over the
complete range of models of lumped element electronic circuits and systens.

SN N e { e S Sl el 8 e e R T e A d [ot S o vt G | | iy teae T

k Sl

=

Seoe b ae B | iy e se S SSe SN Lt

& e

o

11

ek | e Grwearinae | |

=,

Y O M K A R MM T AT T S o o[(ot AT A €34 4 2

Declarative Descriptions for VLSI Generatorst

Meei-Chineh Liem, Jean-Loup Baer,
Lawrence Snyder and Larry McMurchie

Department of Computer Science
University of Washington
Seattle, WA 98195

t Submitted to the Design Automation Conference, June 28 - July 1, 1987.

Research was supported in part by DARPA under contract MDA 903-85-K-0072.

e

T T S ——

""" ~ 5 T W WP T T T R P W ‘.4;.‘_ \‘\-‘.__-\.
Foomeral “n A S L W Tk A P T s B ._,« '\”'M"‘ ' A
1\{"-‘- ‘ \(\h"-\.w: 'CLI:-\H\{.\'\- ..‘F..-\..r.r..'«..‘r 3 "\»."- "H. ".\."m.'“q-'r-\.‘" Ut T T .(‘r“;"r&."r'\.- W Lo e e rH‘« '\\. e MmN s e A

Declarative Descriptions for VLSI Generators

Abstract

High-level descriptions which can precisely describe a circuit among multiple equivalent representations
are introduced. Syntax and semantics for layout, mixed mode, schematics and functional descriptions are
presented. They are illustrated by two examples: a decoder and a multiplier. These descriptions can facili-
tate the VLSI design process and serve as a comprehensive documentation tool.

T W R " e T a T e

v R

e B i gt

A ¥ 0 L R P 0 L T [2

(R A S LR L N

1. INTRODUCTION

Design descriptions of VLSI components and systems are an "integral part of the design process" [Waxman

e e e

\ 86]. In the context of the VLSI generator project in progress at the University of Washington, we present a
declarative generator model which can be used to guide the generation process of a circuit. The description in the

modetl is robust, natural, simple, expressive, and is structured in a hierarchical manner. It can precisely and

RSN

abstractly describe a circuit across its multiple representations. It also serves as a comprehensive tool that

documents the designer’s ideas as well as the complexities of the circuit.

l 1.1. Design Generator Model

A design generator is defined as a program that produces a family of circuit designs, each one solving a
different instance of a particular problem. The input is a problem-specific set of parameters; an example for the
| output is a CIF (CalTech Intermediate Form) definition of the layout of the mask layers. One of the objectives of

the design generator research is to develop a generator construction methodology with appropriate abstractions,

procedures and tools to assure production of correct, quality parts [UW/NW 84].

We use the term "model” to refer to a complex data structure that guides the generation process. The
model fills the gap between the "high level” input and various outputs such as the layout Figure 1-1 illustrates
the role that the model plays in the generation process. The model is an overall static description of one instance
of a circuit. It consists of leaf cells, a set of descriptions, and a catalog which includes the appropriate
characteristics of this circuit. These components are produced by execution of the circuit specific generator
software routines. Under the guidance of the model, the circuit-independent generator routines can create outputs

such as the layout or the schematic diagrams at the gate or the transistor level of the circuit.

Software Routines Model Generator Routines

- de:h_rﬂ}ﬂ.
deacriptlion

b '
: Figure 1-1: The generatinn process :

e L L I e o e T I 2o T AL 4 I Lt Lo L T L o

The model should be sufficiently complete, so that a program which is guided by the model can generate

the layout or other circuit descriptions. On the o' s hand, it should be sufficiently abstract to be able to capture

TN N Vs B

the complex data structure of a design. This paper concentrates on the declarative description of the model.

RAT

x e

1.2, Multiple Representation Problem

High level descriptions which can precisely describe a circuit across its multiple equivalent representations
are needed in the design process. With abstraction, the descriptions can capture the information of how an
instance of the circuit is built and how the circuits vary with the parameters. The declarative descriptions in the

model will serve two functions: (1) design guide, and (2) documentation.

The declarative descriptions are a hardware description language(HDL). According to German &

Lieberherr [German 85], HDLs can be divided into three categories:

The first category consists of languages that are purely functional specifications and do not necessarily
imply a specific structure of the described circuits. One such language is p FP (a variation of the Functional

Programming language FP) (Sheeran 83] that describes both the semantics (behavior) of a circuit and its layout (a

e LR BT T wh T T e A R T o T e T T W, A XY

) floor-plan).

In the second category we can place languages that allow both functional and structural specifications. They
can be further divided into procedural and non-procedural classes. The latter offer safer descriptions than the
former in the sense that more compile-time checks can be done. Among the procedural languages, we can cite
ALI [Lipton 82] that is used to specify layouts free of design rule violations and Zeus [German 85] whose
principles of structuring and much of the syntax are modeled after MODULA-2. Prolog [Suzuki 85], a non-

procedural language, has been used for describing VSLI chips as concurrent building blocks connected by wires.

In the last category, we find languages that are only concerned with structure such as Regular Structure
Generator (RSG) [Bamji 85] which uses previously defined cells to hierarchically build larger cells via macro
- abstraction, Escher [Clarke 85], a geometrical layout system for recursively defined circuits, and SLL, a Symbolic
Layout Language [Ellis 81], that is the human-readable form of the schematic, logic, layout, and simulation

information about a circuit in the Ruby database system used at the University of California, Berkeley.

AR b b A O N T e L T i b e e W e W T T L R e L T W T e L SR LT L L A

R A R T IR,

- - .

2. DECLARATIVE DESCRIPTIONS

2.1. Overview

The high level descriptions which will be used for design and documentation in the generator project should
have the following fundamental properties: (1) Simplicity and Naiuralness, (2) Expressiveness, (3) Abstraction
and Hierarchical Structure, and (4) Technology Independence. Each description describes an instance of a family
of circuit designs in one of four possible representations: layout, schematic diagram (gate level and transistor
level), and functional description. A description consists of two parts: (1) the declarative part, which includes
the name of a circuit, the type of the representation, a list of parameters, a collection of leaf cells, and a set of
imported functions; and (2) the imperative part, which consists of a collection of statements used to describe an
instance of a circuit, e.g. a decoder with three select wires in NAND gatc style. The description for the layout or
the schematic representation can be regarded as a collection of objects (leaf cells or abstract objects) and a set of
relations among these objects. For the functicnal description, the intermediate hidden mechanisms between inputs

and outputs are described.

The syntax of this new high level description is designed to be as close to that of the "C" programming
language as possible since the generators are written in C. The Extended Backus Naur Formalism (EBNF)
definition for the declarative description can be found in [Liem 86].

2.2. Declaration

The syntax of the declarative part of a description is of the form:
NAME <circuit_name> ;
TYPE <representation_type> ;
PARAMETER <parameter_list> ;
LEAF CELLS <cell_list> ;

FUNC <function_list> ;

Boldface characters are used to indicate ke: I required syntactic elements. FUNC <function_list> is

optional and LEAF CELLS <cell list> are not used in the functional description.

The <representation_type> is either LAYOUT, MIXED, SCHEMATIC or FUNCTIONAL.
<parameter_list> is a list of inputs to the circuit. They are arbitrarily chosen; however, the values that they are

bound to in the declarative part are constant through the entire description. <cell_list> contains all the leaf cells

B o I L A A Y L SN DL 00 Ll SR T 0 P e T T 1]

that are used in a description to generate a geometric representation (the layout or schematic diagram in gate level
or transistor level) of a circuit. Leaf cell is the lowest level module in the hierarchy of a description and is part of
the system library. Following the <cell list>, the functions that aid in the circuit description are specified.
Functions are user-defined. For example, binary can be a function which will return a binary representation of a

number.

2.3. Objects

Leaf cells are the primitive objects to which geometric operators can be applied, and out of which more
complex objects (abstract objects) can be built In general, they have some predefined, sufficiently general,
functionality. For example, it can be a NAND gate used for the schematic description of a decoder or a physical
layout of a half-adder used for the layout description of a multiplier. A leaf cell can be instantiated as many
times as desired by specifying the number of repetitions. For example, if Icell is a leaf cell, then | (Icell ‘1))
means to create an object which is a collection of n copies of Icell and the relations among these copies will be
defined by the geometric operator |, i.e. vertical composition. A leaf cell without an argument is by default an

instance of that cell in the user’s working directory.

Abstract objects are created to provide designers with the mechanism to describe a circuit representation
hierarchically so that most of the details at one level of the hierarchy are truly hidden from all higher levels. An
abstract object can be defined recursively. An alias of a leaf cell, an array of leaf cells, a group of heterogeneous
leaf cells, or a combination of the last two is an abstract object. Moreover, an array of abstract objects, a group
of heterogeneous abstract objects or a combination of these two is also an abstract object. It should be noted that
an abstract object represents an integrated consecutive part in the geometric placement. Generally, it is a module
which has some functionality. Abstract objects can also be instantiated as many times as desired by providing the
appropriate arguments. Thus, --(row[i](i=0..4)) generates five objects whose relations are defined by the operator
--, i.e. by horizontal composition. An element of an array of abstract objects can be accessed by specifying the
subscript as in most programming languages. Abstract objects are considered global. Thus, object names within a

description must be unique.

Given the features of leaf cells and abstract objects mentioned before, each description can use many levels
of abstraction. At the highest level of the hierarchy, it is a single abstract object -- the name of the circuit that the
designer intends to describe. At the lowest level of abstraction, the circuit is a collection of leaf cells. The
description of a representation of a circuit is recursive in nature -- each abstract object is specified as a collection

of lower level objects. Since an abstract object is defined after it is used, the description of an object promotes

T T b T T M o AN MR R AN e Yo BT R TN A A AT R4 M T R

“top down" design or "stepwise refinement”,

2.4. Operators

The operators which are used in our declarative descriptions can be arranged in the following groups: (1)

geomerric, (2) arithmetic, (3) relational, (4) logical, and (5) assignment { =),

The geometric operators take objects as arguments and produce objects as results. The first four operators

are used to combine objects into more complicated abstract objects. They are shown in Figure 2-1.

A B A B
A--8B A --NB
B B
A
A
Al B AINB

Figure 2-1: Geometric operators for combining objects

The last three operators are used for linear transformations. They are shown in Figure 2-2.

Y
2 1
A :
> X A A
A - X
—I_l— mirror in X
mirror in ¥
A >

rotate -90 degree

Figure 2-2: Geometric operators for linear transformations

1
1
1
|
t

T T T T T e T L e R e R N v

e = N T K . W AR R e PN O B e N i ey ey - X 0 il R S R

A S L

All geometric operators have the same precedence level and they are collectively left-associative in the
absence of parentheses. The interface (which will be implemented by using registration marks) between two

objects is not explicitly specified since it is an implementation rather than a descriptive issue.

Geometric operators are only usec in describing the layout or schematic representations of a circuit. For
functional descriptions, arithmetic, relational and logical operators are used as in conventional programming
languages. The arithmetic operators are +, -, *, /, ** (exponentiation), and % (modulus operator). The relational
operators are <=, <, == (equal to), != (not equal to), >, and >=. There are two types of logical operators; the
logical connectives include && (AND), and || (OR), while the bitwise logical operators include & (bitwise AND),

| (bitwise inclusive OR), * (bitwise exclusive OR), and ~ (one’s complement).

2.5. Flow of Control

Two fundamental flow-of-control constructs are provided to enhance the expressiveness of a description: IF
(decision making) and looping. IF is used to specify conditions. Looping is expressed in the form of either (1)
providing the number of times for repetition, for example, --(X(m)) means to create m horizontally joined
instances of X, or (2) providing the upper bound, lower bound and step of the loop index, for example, |(X[i}(i =
4 .. 0, -2) means to create 3 instances of X, with X[4] situated at the bottom, X[2] situated in the middle, and

X[0] situated on the top.

3. MULTIPLE REPRESENTATIONS

A decoder! will be used throughout as a representative and simple example.

3.1. Layout Description

The layout description for an instance of a circuit describes how the leaf cells have to be displayed. The
description is hierarchical, and uses substitution. That is, a bigger abstract object is composed of leaf cells or

conceptually smaller abstract objects.

The following statements illustrate the layout description for a 3-to-8 NAND style decoder.
NAME decoder;

TYPE LAYOUT;

!The author of the decoder generator is Marty Sirkin.

A R N e T M A N € L st DAL L 08

e L p—— s e

PARAMETER n =3;

LEAF CELLS dec_na ll, dec_na_i_inv, dec_na_k, dec_na_low,
dec_na_high, dec_na_out, dec_na_one, dec_na_zero;

FUNC binary;
MAIN
decoder = row [2**n] | (| (row [i] (i = 2**n -1 .. O));
row [2**n] = dec_na_ll -- (-- (dec_na_i_inv (n))) -- dec_na_k;

row (i] = dec_na_low -- select_wire [i]
-- dec_na_high -- dec_na_out;

select_wire (i] = (-~ (X [ij] G =n .. 1))

X (i,j] = dec_na_one, if binary (i,j) == 1
= dec_na_zero, if binary (i,j) == 0.

The layout representation is shown in figure 3-1. The corresponding hierarchical structure is shown in
Figure 3-2.
The fragment: decoder = row [2**n] | (| (row [i] (i = 2**n - 1 .. 0)));

creates an object named decoder which is made up of an abstract object, row [2%], and 2" vertically stacked
abstract objects named row [2" - 1], row [2" - 2],, row (0]. row [2" - 1] is situated on top of row [2"], row
[2% - 2] on top of row [2° - 1], etc. At this level of abstraction, row [2°%] and row [i] can be thought of as
primitive components. Their lower level components are defined next.

The fragment: row [2**n] = dec_na_ll -- (-- (dec_na i_inv (n))) -- dec_na Ic;

specifies the components of row [2"] one level lower in the hierarchy. Row [2®] consists of n horizontally
joined instances of dec_na_i_inv with dec_na_ll on the left hand side and dec_na_lc on the right hand side. The
elements in the arraylike structure row are further defined by:
row [i] = dec_na_low -- select_wire [i] -- dec_na_high -- dec_na_out;
For i with the values in the range 0 to 2" - 1, row [i] is created by horizontally joining from left to right an
instance of the leaf cell dec_na_low, an abstract object select_wire [i], an instance of the leaf cell dec_na_high,

and finally, an instance of dec_na_out.

Moving one level down in the description hierarchy, the abstract object select_wire [i] is described in terms

of a collection of another abstract object, X. The fragment select_wire [i] = (-- (X [i,j] (= n .. 1))); specifies that

i
l
%

N b e A M R BN R BN T W AL X TR M 04 TR M K ‘bﬂ(ﬁg

RS, .

)
LA

SEAS)

L Ny
¥

-
-~

....
e PRt
A Sk X P

o
=

4

W
o

!
%
>
3
:

L e g She g il
-,

HATE

AT T U] R

"

A e e TS

)

J
L4

(4

7
3 d 4 d ot
ec.ns ec.ns | dec_na ec.ns ;
dow ~Lero Iero —zero declna_high J
ec_na_out
4 4 T
ec_na ec.ns | dec.na | dec_na .
low ~tero ~Zero ~one dec=ph=ieh d
dec_naout
d 3 d el
ec.ne ec.ne ec.na | dec.na :
dow Zer0 | .one ~zero dec_na_high a
dec_na_out
4 s 4 d To-d
ecC_na ec_ns ec.ns ec_ns :
dow ~Zero | _one -one Geena_high J
ec_na_out
-o_ 5!
i;c-ﬂ. dec_ns deca dec_ns dec_m_high
ow <one Iero Lero |
ec_na_out
. . - 0~ 6!
ec.ne ec.ne dec_na | decna de i
C_na_hi
~low Hne {3 4] one & [
ec.na_out
co.7!
dec_ns dec.ns | dec_na | dec_na :
“ow ity one ore dec_ns_high i
ec.naout
dec_ne dec_na | dec_ns | dec_na .
ow "6 | —sne K dec_na_high _J
dec_na_out
dec.ns d.ec._m d.ec._m dec_ns dec_ne _lc
I § <S4y | daddny | i iny
Figure 3-1: Layout representation
DG R N g e e S A T e S A TR B TS

QIR S T T A SR A NP Qb R L

G AT AT L TR AT

DRV RN

decoder
&: rowl2D=1] es¢ row[i] row(0]

-
2

-

dec.na.ll dec.na.iinv(n) dec.nac dec.na.low ssiectwireli) doc.na high dec.ne_out

7

X{iln} Xliln-3] eeo 2lil1)

dec.na.one or dec.ne.sero

Figure 3-2: Hierarchy of objects in layout description
each select_wire consists of n horizontally joined instances of X with indices from n to 1, from left to right

respectively. It is important to note that index i is required in the expression. It serves to distinguish different

S g sl SN e A WA DR, o e SR SRERRN

instances of select_wire. The definition of X clarifies this point. Abstract object X is defined as:

X [i,j] = dec_na_one, if binary (ij) ==
= dec_na_zero, if binary (i,j) == 0;

That is, if the jth bit of binary representation of i is 1, then substitute dec_na_one for X. Otherwise, substitute

dec_na_zero for X.

Note that it is relatively easy to identify components of the circuit which are dependent on or independent
of the parameter from the description. For example, the number of instances of dec_na_i_inv in row [2"]
depends on the size of the input. However, the structure of row [2%] is invariant. In other words, dec_na 1l is
always the leftmost component and dec_na Ic is always the rightmost component regardless of the number of

instances of dec_na_i_inv in the middle. This observation is important in the understanding of a decoder over the

entire space of parameters.

5
|
i
>
s
i

L D BT P e e P T T X L o D DU R0 0 A ot W O MM S M M M M MY 0 M

272" o7 s NN

Wi iV W
A m

B R = SR O Sy o e e g e T o

-

T e N e e e R e e T R S O N U e SNy~ 2 R e o By S ™.

3.2. Mixed Mode Description
A mixed mode description illustrates how components (such as gates, transistors, and intersections of wires,
etc.) are connected to perform a certain function. This representation can help create the logic network description

for NETLIST and simulation. A mixed mode description is also hierarchical and uses substitution.

The mixed mode description for a 3-to-8 NAND style decoder is as follows.
NAME decoder;
TYPE MIXED;
PARAMETER n = 3;
LEAF CELLS gnd_mix, zero_mix, one_mix, in_mix, out_mix;

FUNC binary;

MAIN
decoder = row [2**n] | (| (row [i] (i = 2**n - 1 .. O)));
row [2**n] = (-- (in_mix (n)));
row [i] = -- gnd_mix -- (- (X [i,j] = n .. 1))) -- out_mix;

X [i’j] = OUe_mix, if biﬂary (i,j) ==
= zero_mix, if binary (i,j) == 0.

The leaf cells are shown in Figure 3-3.The leaf cells in the mixed mode description correspond to those in
the layout description. For example, zero_mix and dec_na_zero, one_mix and dec_na_one, and in_mix and
dec_na_i_inv perform the same functions. Figure 3-4 shows the expansion of the output of the mixed mode
description (a schematic diagram at the transistor level) for a 3-t0-8 NAND style decoder. The hierarchy of

objects in mixed mode description is the same as in the layout case.

The close correspondence between these two descriptions is very important for design and documentation.
The mixed mode representation provides one higher level of abstraction in circuit representation and is more
immediately descriptive than the layout representation. Therefore, the corresponding part in the layout
representation can become more understandable to the designer and users of the generator. Moreover, suppose
that after verifying the electrical correctness of the circuit through the mixed mode representation, the designer
decides to change part of the design. It is relatively easy to locate the corresponding part in the layout

representation and make appropriate modificat ons.

T T T R N N R N R AN 7

10

gnd_mix in_mix out_mix
—— ——
zero_mix one_mix

Figure 3-3: Leaf cells for mixed mode description

3.3. Schematic Description
The schematic description provides one higher, more descriptive level of abstraction than the mixed mode
description in the sense that the graphical version of the former is at the gate level, while that of the latter is at the

transistor level.

The following is ‘he schematic description for a 3-to-8 NAND style decoder.
NAME decoder;
TYPE SCHEMATIC;
PARAMETER n = 3;
LEAF CELLS nand_sche, zero_sche, one_sche, no_connec_sche, in_sche;
FUNC binary;
MAIN
decoder = row [2**n] | (| (row [i] (i = 2**n - 1 .. 0)));
row [2**n] = (-- (in_sche (n)));
row [i] = (-- X [ij] = n .. 1))) -- nand_sche;

X [ij] = (1 (C[ijk] (k= 1. n))

s A T T A P N K AR L LA A T L LT i

g 11

A

| >
J‘_: e —_——
: | ey
.;1 — —p—
)
' | —
y

—
w

—
J,

—
‘ I R
é - - —prees
' | ———
: — —u—— ——
|
{
]
l‘
| Figure 3-4: Mixed mode representation
N
b‘
4 C [ij,k] = one_sche, if binary (ij) == 1 && k == j
| = zero_sche, if binary (ij) == 0 && k ==j
‘ = no_connec_sche, if k != j.
E Figure 3-5 shows the internal details of each leaf cell, and figure 3-6 shows the schematic diagram of a 3-t0-8
i NAND style decoder.
] The hierarchical structure of the objects used in the schematic description is shown in Figure 3-7. It is
4
:
]

..

o i I T T T AT T LD I o T L P Dy ML 4 o B S LA e)

%

-

w Y v N
ARSI

5 .

td
£}

'l{J

.
E e S |

p B Wy By Ty ¥y X &« r Y v’ : e ™ @ j
R sell WA NSRRIl IR D

ﬁ,:p;a_;

12

nand_sche

zero_sche ¢

one_sche o

no_connec.sche

in_sche

Figure 3-5: Leaf cells for schematic description
important to note that the hierarchy is extended one level lower, but the correspondence with other descriptions

still holds.

3.4. Functional Description

The previous three descriptions specify the geomerric relations of objects. In contrast, the functional
description does not specify the relative positions of objects, but how a particular design should respond to a given
set of inputs. In other words, the algorithm to be performed by a circuit is described. The following statements

illustrate the functional description for a 3-t0-8 NAND style decoder.
NAME decoder;

TYPE FUNCTIONAL;

A g T T T e S O T e e A A o o A A AT oy T

x.

Pt "% }

13

i

a4 R
e e A B A

-5
i

2 A X R T R Ko N S T A AN

e
x

41 4

Figure 3-6: Schematic representation

PARAMETER n = 3;

FUNC nand, binary;

Ty Rttt W Aty T T TR ¥ X X A S N 5SS

MAIN

e

decoder = OUTPUT [i] (i=0.2 **n- 1);
INPUT=A[j](=n.1

OUTPUT [i] = nand (X [i,j, j = n .. 1): <timing_specification>;

T N " ww wT wt a” T x FEE

-

r:W\ R R A A AT TR AR T RS CR P S SR L T PR VR PR VL P LR PRI AT SR VR Rt

YYYYYYYY

.........

ST

14

3 decoder
i row([2R) rowlzﬂ:;-//rowkoo-\rowlol

insche(n) Xlilln] Xlilln-1)« « « X[i][1] nand_sche

cliJ[1)(1] clill1](2]) « « « cli]l1]In]

|

one_sche or
zero.sche or

no_connec_sche

Pl e I

L
s

Figure 3-7: Hierarchy of objec'; in schematic description

X [i,j] = binary (ij) * A[j] + ~ binary (ij) * = A[j].

B alC AT s e GRS e B

The imported function nand simulates the function of a NAND gate. The statement

decoder = OUTPUT [i] (i=0.2**n - 1);
denotes that there are 2" outputs named OUTPUT [0], OUTPUT (1), .., and QUTPUT [2° - 1]. A similar
notation applies to INPUT. Each input and output is one bit wide. These two statements correspond to the first
two statements in the schematic description: OUTPUT [i] is functionally equivalent to row [i] and both row [2")

and A (j] G = n .. 1) deal with the inputs (the complement of A (j] is specified by the complement operator ~).

TimTl B PR 1 3ot T T A A _ B o X ¥ Ty

OUTPUT [i] is further defined by the function nand:
OUTPUT [i] = nand (X [ij], j = n .. 1): <timing_specification>;
The <timing_specification> specifies when the output bit becomes stable and available for an external circuit. It
can be expressed in terms of i, clock period (T), and time delay (td). The values of T and td are technology and

implementation dependent.

Depending on the jth bit of the binary representation of i, i.e. binary (ij), the value of X [ij] is either the

input A (j] or its complement ATj]. Note that given an OUTPUT [i], the binary representation of i corresponds to

e T TN RN TE LR R R A R, AR R

'%fri*aifiz-$~4$:-i§.§1~.f-f.’a:-f-:'-::-}?}}3}3}3&1:{-*#ﬁ‘f::«;~:1-:~}}.‘:f.«}h:~;~z§e-é:-}:-;rrg»m‘mwmmwmwxm-r;:f.'xf:f-m;m-x'*

2

]
i
]
4
4

AL

Ve T a xR Kk

»

- ALY

N Al

T N La

LIRS s o et LS

TaolER . L X A .

-i\

15

the inputs A[n] A[n-1] ... A[j] ... A[1], where A [n] * 2®! + A[n-1]*2%2 4 . + A[1] *2° = i. Note also that
for an asserted OUTPUT [i], the inputs to the NAND gate must be all 1's. The algorithm is thus the following:

X [ij] = A G, if binary (i) == 1;
X [l’.]] = m) if bi"ary (l’.]) e oa

Since binary (ij) is either 1 or 0, the algorithm can be simplified by stating that
X [i,j] = binary (ij) * A [j]1 + ~ binary (ij) * = A [j].

While the functional description uses arithmetic operators rather than geometric operators to describe a
circuit, it still corresponds with the other descriptions. As before, the mechanism which is used is substitution and
the structure of the description is hierarchical. The major difference is that the leaves of the tree now are inputs

or their complements while the leaves of the trees in other descriptions were leaf cells.

4. A MORE COMPLEX EXAMPLE -- MULTIPLIER

This section will present a more complex example, a multiplier, to illustrate the versatility of the notation.
mult is a generator for constructing an M x N cmos muldplier layou?. A 3 x 3 signed two’s complement
multplier is chosen as an example in our discussion. We only show the schematic and the functional descrip*icns

here. - The layout and the mixed mode descriptions can be found in [Liem 86].

4.1. The schematic Description

The schematic description for a 3 x 3 signed two’s complement multiplier is as follows. Figure 4-1 shows

the expansion of the schematic description.
NANE muldplier;
TYPE SCHEMATIC;
PARAMETER m=3,n=3;
LEAF CELLS SignExt, FullMult, LSignExt, Comp, RComp, Add;
MAIN
multiplier = adder | row[n] | (| (row[i] (i = n- 1 .. 1)));

row[i] = SignExt -- (-- (FullMult (m - 1)));

*The author of the multiplier generator is Wayne Winder.

R M e Rk A L e B R R M TR AT AR L

-L‘w

R e T —

16

X,0 0 0 X 0 X,
Yoq — SignExt FullMult FullMult
g
0 l lro 0 _L SumO,O
p
Yy —— signExt N FullMult FullMult <
5 l » 9, sumo“
Y, —LSi £
2 ILSignExt Comp RComp
9
0 in < :
Add [+ Add [Add Add
P P, Py P
Figure 4-1: Schematic diagram of a 3 x 3 multiplier

row[n] = LSignExt -- (-- (Comp (m - 2)})) -- RComp;

adder = (-- (Add (m + 1))).

To generate a signed two’s complement multiplier, six leaf cells are needed. SignExt generates the sign
extension bits f] and g for 0 < j < n-2, while LSignExt evaluates the last sign extension bits, f.,andg ,. The
function of FullMult is to calculate the sum of carry_out, j sum_out; , ; and the ANDed function of X; and Y; for

0<i<m2and 0 £j<n-2. Comp and RComp evaluate the sum of carry_out; -, sum_out_, . and the

ANDed function of X{ and Y_,, 0 S i< m-2. They are basically the same with the exception that Y, in

RComp exits from the right hand side and curves down to the first bit of the ripple adder. Y, is one of the
inputs to the lowest bit of the ripple adder because of the last term in the expanded version of the nth partial

product, Yn_12°‘l. The leaf cell Add computes the sum of three inputs and produces one bit of the final product.

In addition, the carry out is sent to the next higher order bit position of the ripple adder.

T N O R SR e E R CC R L S AR T I Ay PR SO

17

Thus row([i] accomplishes the process of forming the partial product, adding it with the previous cumulative

sum and performing the sign extension. The function of row[n] is to perform the ANDing of the complement of

multiplicand and Y, , as well as generate the cumulative sum and the last pair of sign extension bits, f_, and

% 8,.1- The object adder generates the higher order m+1 bits of the final product. The algorithm used for the
:3.; multiplication is not evident from this description. Hence, we need a functional description.
ot

4.2. The Functional Description

The functicnal description describes how the final product is generated given a multiplicand X with m bits
and a multiplier Y with n bits. At the highest level, we could simply say that OUTPUT = X * Y. While this
might be sufficient for some high-level functional simulation, further details will often be needed. The next level

is described as:
NAME multiplier;
TYPE FUNCTIONAL;
PARAMETER m=3,n=3;
MAIN

multiplier = OUTPUT[!] ({ = 0 .. m+n-1);

INPUT = X[i] (i = 0 .. m-1),
Y[l G=0. n-1);

OUTPUT =X*Y
= CS[n];

"
, "
.
N
s
3
\

CS[k] = CS[k-1] + PP[k], if 1 <k <n;

BN

33 CS[0] =

g

i PP[k] = Y[k-1] * X * 2**(k-1), if 1 Sk < n;
PP(0] =

3

PP[k] represents the kth partial product and CS[k] represents the kth cumulative sum of the partial products.
Note that the details of the extension of sign bit and the separation of carr, and sum in each cumulative sum are
not explicitly described here. This functional description corresponds to the given schematic description. The first
n-1 rows of row|i] correspond to the first n-1 CS[k]’s while row[n] and the ripple adder are implicitly accounted

for by evaluating CS{n].

e e e T g B il Nl S S S ARV SO U O

“t‘bﬂ e T R T P e T L S A e s e e Tk T T P N A

18

At the lowest level of description, the generation of each bit of the product output and sign extension bit is

shown.

NAME multplier;

AL TRV R i AV o BN R o RN N W

TYPE FUNCTIONAL;
PARAMETER m=3,n=3;
FUNC sum, carry, summation;

MAIN

e e

/* TERMINOLOGY:

CS[k] = cumulative sum of partial products; made up of partial
sum and partial carry. 1 <k <n.

PS[k] = partial sum; the sum portion of the result of an addition
when the carry overs are not rippled through the higher
crder bits.

PC[k] = partial carry; the carry portion of the result of an
addition when the carry overs are not rippled through
the higher bits.

Note: PS[k] + PC[k] = CS[k] the total result of the
addition.

F(k] = the higher order bit resulting from extending the sign
bit during an addition. This is also the MSB of PC[k].

Glk] = the lower order bit resulting from extending the sign
bit during an addition. This is the MSB of PS{k].

RS[/] = sum bit generated by the ripple adder. This is also
one of the product bits. n-1 £/ < m+n-1.

RC[/] = carry bit generated by the ripple adder.

PP[k] = partial product; it is one bit of Y times the vector X,
then shifted appropriately.

Fnlk,/] = bit with the 2**! power of the kth evaluation
of the function Fn. %

multiplier = QUTPUT(/} (! = 0 .. m+n-1);

INPUT = X[i] (i = 0 .. m-1),
Y([j1 G =0..n-1);

ATENNESTE TR TR T el R - W X K A B B IR W R B By b SRR e w R KK B SRS w e XK

OUTPUT =X *Y
= RippleSum;

RippleSum = summation (RS[t]*2**¢, t = m+n-1 .. n-1) +
summation (OUTPUT[t]*2**t, t = n-2 .. 0);

P T———

RS[N} = sum (PS[n,N], PC[n,N}, RC[1), if n-1 £ ! £ n+m-2;

RS{m+n-1] = sum (0, PC[n,m+n-1], RC{m+n-1]);

e

B T T T ———

g
) B ¥
s
J,/‘
rﬂ, v
.]
>
"
'(“l .
4l
=<}
g
Y
Ty
‘r‘
=gl 4
&
=
A A
-
e
A '.-s
5

U B N ey B B e A N G ST I N T Y

19

RC[I+1] = carry (PS[n,{}, PC[n,{], RC[1]), if n-1 €I < n+m-2;
RC[n-1] = 0;

PC[n,n-1] = Y[n-1];

/* cumulative sum is made up of partial sum and partial carry */
/* PS{k] and PC[k] are not added until next addition */

CS[k] = PS[k] + PC[k],if 1 Sk < n;

PS[k] = sum (PS[k-1], PC[k-1], PP[k])

= summation (PSik,t]*2**¢, t = m+k-2 .k) +
summation (OUTPUT[t]*2**t, t = k-1 .. 0);

ST T Tl AT R e N KN N AR Ty W N TN L a el B A

PS[0] = 0;

/* The MSB of a partial sum is G[."] */
PS[k,m+k-2] = G[k];

PC[k] = carry (PS[k-1], PC[k-1], PP[k])
= summation (PC[k,t]*2**t, t = m+k-1 .. k);

PC[0] = 0;

/* The MSB of partial carry is F[k] */
PC[k,m+k-1] = F[k];

e e ™ e T TN TR . = BN WSS et el SR

F(k] = F[k-1] | PP[k-1,m+k-2], if 1 Sk € n-1;

F[0] = 0;
]
G[k] = F[k-1] - PP[k-1,m+k-2], if 1 <k €n-1;

i

' G[0] = 05
; Fln] = F[n-1] | X[m-1]*Y[n-1]);
g G[n] = F[n-1] | " X[m-1]*Y[n-1]);

PPk] = Y{k-1]*X*2**(k-1)
= summation (PP[k,t]*2**¢, t = m+k-2 .. k-1), if 1 <k < n-1;

PP[n] = (X[m-1]*Y[n-1] - Y[n-1])*2**(m+n-2) +
summation (Y[n-11*" X[t]*2**(t+n-1), t = m-2 .. 0) + Y[n-1]*2**(n-1);

OUTPUT(/] = RS[!]: <timing_spec>, if n-1 <[< n+m-1
= PS[I+1,1]: <timing spec>,if 0 <1 < n-2.

Three functions, sum, carry and summation, are used. Sum (a,b,c) is equal to a XOR b XOR c¢ and Carry
(a,b,c) is equal to ab OR bc OR ac. Summation is the addition of terms in the series. This function simulates

hi
the expansion of)ﬁ\t Thus, summation (RS[t]*2**, t = m+n-1 . n-1) represents
t=lo

T T T T L T N N M R L M M My B X 8 M A MR o KT

20

RS[m+n-12™*" L RS[m+n-2]2™*" 2, +RS[n-1]2",

This functional description is very close to the actual implementation of the algorithm. The multiplication is
a sequence of carry-save additions with one ripple addition at the end. The 2's complement notation
implementation requirements are handled in the sign extension(f and g) and the generation of the last partial

product PP[n}.

§. CONCLUSIONS

In this paper, we have described the multiple representation problem and proposed a model which provides
descriptions of the multiple equivalent representations of instances of a circuit for design and documentation
purposes. A set of notations to be used in the various descriptions has been introduced. These notations have
been created to make the descriptions simple, natural, expressive, and to show abstract, hierarchical structure and
technology independence. Two examples, a decoder and a multiplier, have been used to illustrate the application

of the descriptions.

For each design, there are some common characteristics among the four different views of description.
They are
* The descriptions are declarative.

* The hierarchical decomposition of the design proceeds recursively. Multiple levels of abstraction
make it possible to suppress unnecessary details and make the design more comprehensible.

e S e e S QR SRS e SR T SRR S S P S e i el A S’ s Yeen ot ot o e ot | 20 B e o

* Substitution is the mechanism to navigate in the hierarchical description.

* There is a correspondence between different descriptions. As a result, the change of design across
different descriptions can be made easily.

Various extensions to the declarative descriptions can be done to form a more powerful and flexible model

that guides the generation process. Two areas of research which need further exploration are: building a

translation system which can generate the appropriate outputs for different descriptions of a circuit; and creating

B R L

a design database which can organize the design data across the multiple representations of a design.

AN

T —__ 3

e L —————

y N b L M I M W A BN WS N e b Ll W e B P

N,

-

= B G |

21

References

(Bamji 85) Bamji, C., Hauck, C. and Allen, J.
A Design by Example Regular Structure Generator.
In 22nd Design Automation Conference, pages 16-22. IEEE, 1985.

(Clarke 85] Clarke, E. and Feng, Y.
Escher--A Geometrical Layout System for Recursively Defined Circuits.
Research Report CMU-CS-85-150, Department of Computer Science, Carnegic-Mellon
University, July, 1985.

. A A A A N v a w T

(Ellis 81] S. Ellis.
A Symbolic Layout Language & Database for an Integrated VLSI Design System.
Master’s thesis, Department of Electrical Engineering and Computer Sciences, University of
California, Berkeley, December, 1981.

R

{German 85] German, S. and Lieberherr, K.
Zeus: A Language for Expressing Algorithms in Hardware.
IEEE Computer :55-65, February, 1985,

[Liem 86] Meei-chiueh Y. Liem. » :
Declarative Descriptions for VLSI Generators. P
Master’s thesis, Department of Computer Sciences, University of Washington, June, 1986.

(Lipton 82] Lipton, R., North, S., Sedgewick, R., Valdes, J., and Vijayan, G.
ALL A Procedural Language to Describe VLSI Layouts.
In 19th Design Automation Conference, pages 467-474, IEEE, 1982.

BAINEEETToE T T a8 A R

[Sheeran 83] Mary Sheeran.
W FP - An Algebraic VLSI Design Language.
PhD thesis, Oxford University Computing Laboratory, November, 1983.

[Suzuki 85] Suzuki, N,
Concurrent Prolog as an Efficient VLSI Design Language.
IEEE Computer :33-40, February, 1985.

[UW/NW 84] UW/NW VLSI Consortium.
ngahlity VLSI Design Generators.
19
A Research Proposal Submitted to The Defense Advanced Research Projects Agency
Information Processing Technology Office by Department of Computer Science’s University
of Washington/Northwest VLSI Consortium.

[Waxman 86] Waxman, R.

Hardware Design Languages for Computer Design and Test.
Computer (4):90-97, April, 1986.

e b b R b R W N P W b M7 M M S Y7 0 T 7 Ton PN e P ™ n Fom o B AT b N P PN P P T g ['o8 [y

Appendix B

The Energy Complexity of Transitive Functions!

Lawrence Snyder & Akhilesh Tyagi 5

Department of Computer Science ;

University of Washington ‘
Seattle, WA 98195

T A Sttt > P X, T %N e g e

tProceedings of the 24th Allerton Conference on Control, Communications and Computing,
Allerton Park, IL, Oct. 1-3 ’86.

T) L X T ¥ 3 X

o (Af

»

X1 e

* Supported in part by DARPA under Contract MDA 903-85-K-0072.

Faee

T

O TS

e o e o e T T T T Do T e Pt T o R R e T P e T T T P SR P % o N
e e o T T T T s T T T T e T e T T T T o o T 2 PR ™ 2\

The Energy Complexity of Transitive Functions !

LAWRENCE SNYDER & AKHILESH TYAGI
Department of Computer Science

University of Washington

Seattle, WA 98195

Abstract

We define a normal transitive function to be a function that embeds a computation of the
permutation group generated by the cycle (12 3... n). Despite this restriction, the class of
normal transitive functions is rich enough to include all the functions that Vuillemin showed
to be transitive. A partial list consists of shifts, cyclic shifts, multiplication, convolution and
linear transforin. We show that for an implementation of these functions, where every wire
is allowed to switch at most once, the average switching energy, E,(C), is 2(n?). If a wire
is allowed to switch more than once then we prove a lower bound of EL(C) = 2(n%?). We
prove that word systolic systems for transitive functions consume the same order of energy
both on average and in worst case. In particular, the average case energy E4(C)is £2(A) and
the worst case energy E,(C) is O(A), where A is the area of any embedding for a circuit C
to compute a transitive function. However, to demonstrate that this unexpected behavior
is not universal, we show the existence of a systolic system for a problem for which the
average case and worst case energy consumptions can be separated. We alsc extend a result
by Kissin on a lower bound on the worst case switching energy of 1-switchable functions.
For any convex embedding of a circuit to compute a 1-switchable function within depth
d(n), log’n < d(n) < n, with 0 < € < 1, Ey(C) x d(n) is 2(max(nlogn, nd(n)). Note
that every transitive function is also 1-switchable, implying that these lower bounds apply
to transitive functions, as well.

1 Introduction

Due to engineering limitations on heat dissipation from a planar chip and a general trend
towards energy conservation, energy efficiency of VLSI circuits has become an important issue
in VLST algorithm design. Despite relatively low energy consumption of CMOS technology, the
energy dissipation is still an issue in the design of high performance systems for the following
reasons. The circuit designers tend to overdrive the CMOS devices for higher speeds. Worst
still, in CMOS technology, the power consumption is a direct function of the system frequency.
Thus high performance architectures need to be designed even more carefully, to be energy
conscious. Most high performance systems are based on the concept of pipelining or systolic
dataflow. The trend towards integrating most of the architectural components onto fewer
and fewer chips has encouraged the design of datapath and control components with systolic
algorithms due to their simple communication structure. Vuillemin [10] identified an important
class of vfunctions known as transitive functions. Interestingly, this class encompasses all the
data path functions like multiplication and shifting. Thus, our result has a wide impact 1n as
much as it frees the designer from considering energy optimization as one of the objectives of
the design. The second result reconfirms the widely held belief that the designer can trade the
speed of operation with the energy consumption. .

With the wider availability of VLSI design environments, and introduct” n of systematic
design methodology by Mead and Conway [7], relatively inexperienced designers are transcrib-
ing their algorithms into silicon. Often, such engineering applications include multiplication,
convolution and linear transforms. Interestingly, all these functions are normal transitive func-
tions.

'Supported in part by DARPA under Contract MDA903-85-K-0072

P’ S P arahinlishalalay B 02 U5 B W I B R iy R e i

y - ¥ Wok TR AT £ T R el e e 4t HA L TN MO ST e A LNt -4-“ B L7 W P
e L4 A T o A o e M R e AN Y o 1 SO Qs S L 3 0 AT M L

E Lengauer and Mehlhorn [6] have shown that for a function vith AP? = O(n?), switching

%‘f energy is bounded from below by 2(AP), where A 's the area and P is the period of a pipelined

{. computation. Kissin [5] proved that for some monotonic circuits, switching can be superlinear,

\\:: but switching energy is still bounded by O(A). Kissin [4] explores switching complexity of
%l

comparison, or and addition functions. She shows that for 1-switchable functions, £2(n logn)
worst case switching energy is required iI computation is to be performed within depth O(logn).
K She also gives a linear average energy iayout for an adder.

; We first describe the VLSI model of computat.on and energy consumption. We prove
a lower bound of £2(n?) on the average switching energy of normal transitive - .ctions. In
section 4, we show that the lower bound on average switching energy of a trinsitive systolic
system matches the upper bound on the worst case switching energy. We couciide with the
result about depth switching-energy trade-off. For a detailed version of this wous, the reader
is referred to the technical report [8].

(Ete 4

“»

A -
O

r

A

*u

oY

-3

1 Model

We will formally define the model in which we charge for energy. Dur energv model is the
same as the one originally outlined by Kissin [5]. For the sake of completenes. = will briefly

L

> describe the model. The VLSI model is the commonly accepted one, propose 7 Thompson
}‘{ [9]. A layout can be viewed as an embedding of the communication graph in a rtesian grid.
- Each grid point can either have a processor or a wire passing thrcugh. A - can not go
A through a grid point unless it is @ terminal of the processor at that grid point. -es have unit
__'; width and bandwidth and processors have unit area. The initial data values : localized to
7 some constant area, to preclude an encoding of the results.

' Lot u be the unit switching énergy defined to be the energy spont wher a wire of unit

length switches (changes state either from a 1 — 0 or from a 0 — 1). Note tha! a minimum
size processor also consumes O(u) energy when it changes state. We will say that a wire of
length ! consumes §2(I) energy when it switches. It is implicit hers that u is a vechnology
dependent constant.

(ot &

Y We do not account for the switching energy consumed by the processors. This /s in accor-
. dance with the widely held belief that the wires take up most of the area in a * L5I layout.

Since v'. are working with the lower bounds on switching energy, energy consuription of the
wires cefinitely provides a lower bound on the total energy consumed.
We work with the Uniswitch Model (USM), as defined in Kissin [5). In this model, a signal

L5

(X

3\“ can propagate along a wire of arbitrary length in constant time. This restricts every wire in
%‘j{ an acyclic circuit to switch at most once, for unpipelined computation. A symmetric notion
i is that of the Multiswitch Model. Kissin shows some upper bounds on switching energy of
- certain circuits in the Multiswitch model.

N ASSUMPTIONS:

z\.\' 1. Each node in the circuit depends on an input, i.e., for each node, a pair of inputs exists
:3}‘ which makes that node switch.

% 2. All the inputs are synchronous. In other words, they are applied at the input pozts,
E‘,: simultaneously.

:',j 3. Circiits are synchronous.

N We denot a circuit C(V, W) as & graph, where V' is the set of nodes and W is the set of

S |

edyes or wires in V x V.

Definition 1 A circuit C(V,W) is said to be in state s: VUW — {0,1}, if s is consistent
according to the following conditions.

¥
AN m A _m

3

sy AN

S A A T b o A T o T T e

72

o For an input node z;, s(z;) is consistent with the input xoz,...Tn-1. For an inpul wire
w = (z,y), s(w) must equal s(z;).

s

===t 2

o Non input nodes and cdges have the values consistent with the input values and the
labels of the nodes. For example, for a node, v, labelled by A with stale of inpul wires
s(wy) = 1,8(we) = 1, s(v) must equal 1.

.
S

2
al

Definition 2 A wire w (node v) is said to have swilched from state sq to state s; if so(w) #

s1(w) (so(v) # s1(v)).

We define a measure of energy consumption for a circuit. When a circuit C is subjected
to an input T, let wire w; switch k; times before the circuit is settled. Let l; be the length of

Al
X

et
S Nl

S a wire w; in the circuit C’s embedding in a grid. Then the energy consumption for circuit C,
Ew(C,s,%)in state s with T as the input is defined to be u X 3, ¢y ki X [;. For the Uniswitch

o model k; < 1. We will distinguish between worst case energy consumption and average case
i energy consumption.

Definition 3 The worst case energy consumption for a circuit C, E(C), is defined to be
maz, zEw(C, 8,), where maz is taken over all (state, input vector) pairs.

We similarly define the average case energy consumption. Note that an input assignment
7 defines the state of the circuit completely.

Definition 4 The avarage case energy consumption for a circuit C is defined to be its energy
consumption averaged over all initial states cnd all input vectors. Thus E,(C) =
L2 Ew(C,s,T) /2%, where n is the number of input bits.

oy e
it GRS x

For further details of this model, the reader is referred to Kissin's papers [4], [5].

Y
B

3 Normal Transitive Functions

In this section, we show that for a general implementation of a normal transitive function
(defined below), the average case energy E,(C) is £2(n?). The class of normal transitive
functions encompasses all the functions that were used as examples of transitive functions by
Vuillemin [10]. We first show that for a normal transitive function, E¢(C) is no less than the
switching energy consumed by n/2 edge disjoint paths from input ports to the output ports.
Then we show that the energy consumed by these n/2 paths is £2(n?).

We first define a class of functions analogous to Vuillemin’s transitive functions.

.

N LSS

Definition 5 A boolean function f(z1,Zz,...,Tn,C15€2y..+,Ck) = (Y1,Y2,--+,Yn) is said to be
normal transitive, if it computes either ‘he permutation group generated by the cycle (12 3...n)
or a product of such groups. The bits ¢1,¢;,..., ¢k are the control bits specifying a permutation

group element.

In other words, the normal transitive functions embed a shifting like computation as a special-
ized instance. It is easy to verify that all the functions Vuillemin shows to be transitive, are
just normal transitive. All his proofs show a reduction to the shifting permutation group. In
particular, shifts, cyclic shifts, multiplication, convolution, linear transform and three matrix
multiplication are all normal transitive functions.

We exploit the structure of the shift permutation group to show that when each of the
n input bits and ¢ control bits switch independently with probability 1/2 each, the expected
number of output bits that switch is n/2.

Theorem 1 For a normal transitive function, on average n/2 output bits switch.

L A LTS T T D e Sl SO

-

=

':»‘\'.(‘vf,‘f"-.’ AR MM S T B RS T LN\ L L T e) “ ~ L NN P WA WA Y AW
AN, TR L (1 T NN o Y b L LA A AT M A MO N €

x
»

xSl b

ProOF SKETCH: We prove the result for a shifting permutation group. It can be easily
extended to a product of two shifting permutation groups of different order.

Let z; denote the jth input bit and let y; denote the /th output bit. Without loss of
generality, assume that at time ¢, the control bits specify the identity permutation, i.e., yi(t) =
z;(t),1 < j < n. Since f computes the shift permutation group, for any = € G such that the
encoding of r differs from encoding of the identity permutation by /2 bits, Y(i+k)modn(t+1) =
z;(t+1),1 < j< n,forsome0< k< n-—1. Inother words, each input bit is connected to an

- 4
s A

x

“: output bit & bits up/down. n/2 of n input bits are expected to switch. There are two cases.
*. L. zj(2) = Z(j4+k)modn(t)- In this case, z;(t) = y(;+x)modn(t). The probability that z;(t) does
Oy not equal z;(¢+ 1) is 1/2. This implies that the probability that the bit Y(i++)modn(t) #
Y(j+k)modn(t + 1) is 1/2.
5 2. 2j(t) # T(j+k)modn(?). This case is similar to the previous one. Here, z;(t) # Y(+k)modn(?)-
| The probability that z;(t) does not equal zj(¢ + 1) is 1/2. Once again, this means that
o the probability that the bit y(j4s)modn(t) # Y(j+k)modan(t + 1) is 1/2.
ﬁ This shows that the probability of each output bit switching independently is 1/2. Hence
" the number of output bits expected to switch is n/2.
o
*
0

o
o The previous theorem shows that half of n output bits are expected to switch, even when
! we allow the permutation group element to change. Let 7 and O be the sets of input and
_\' output bits respectively. A partition of the chip is denoted by p = (Zr,Zr, O, Or), where
:3 I=TI,UIgpand O = OLUOR. Let (i,0), where i € 7, o € O, be an input bit position, output
¥ bit position pair. A pair (%, 0) is said to be a straddled pairif either i € I & 0 € Ogori € Ip
5 & o0 € Or. There are n/2 (i,0) pairs that switch. In order to be able to show that most of the

area of a chip switches, we have to show that a significant fraction of n/2 switching (i,0) pairs
b are straddled pairs.
:: Lemma 1 For a normal transitive function, at least n/3 of n (i,0) pairs are straddled pairs.
i PROOF SKETCH: A partition could either divide I relatively evenly between two sides, i.e.,
¢ both 1/3 < |I|, |ZRr| < 2/3; or one of I, or Zg has more than 2n/3 bits. In the second case,
iy it is easy to see that at least n/3 of the input bits from the side with > 2n/3 input bits will
< be paired with the output bits on the opposite side. In the first case, we average over all the
:- n control word values. Let ¢ denote the value of control bits Clogn-+-C2¢1. Let ;. be 1if z;
2 and y;,. are on the opposite sides, and 0 otherwise. For every output bit y;, there are at least

n/3 input bits which are on the other side. Thus Y02 §;—c. > n/3. If we sum it over all the
output bit positions j, and divide it by the number of permutation group elements n, we tind

o~

5

1 that an average group element creates at least n/3 straddled (i, 0) pairs.

)

) o
! By Theorem 1, at least half of these straddled (i,0) pairs are expected to switch. Thus
':: there are at least n/6 input bits that switch and whose corresponding output bits are on the
?_\' opposite side. Next step is to show that these n/6 straddled pairs switch most of the area.

3

b Theorem 2 Let f(zy,Z2,...,%n,€C1,C2. . Clogn) = (V1,¥2,-+.,Yn) be a normal transitive
l function. The switching energy consumed by the switching of 2(n) (i,0) pairs (zi,,y;,)

(Zigs Usa) -+ (Tignr Yixn) 18 given by 2(n?).

T THERN A Sy e N

.
R oy T R I O B e e (T T g B T T T L RO T S OO N o TR A T VP PEFEPO PRI,

W
q Proor SKETcH: The proof is similar to the one given by Thompson to show that the arca of
A a graph with bisection width w is 2(w?). The bisection width of the subgraph spanned by 7
L\ and O is k. We count the contribution to the lengths of the edges of k disjoint paths crossing a
:*‘JQ bisecting line z = a with one jog. Thompson counts the area contribution of the edges crossing
" such a line. O

" We can generalize this result to the circuits where a wire is allowed to switch more than
k’{{ once. Then a circuit to compute a normal transitive function could have a bisection width
'-.{3\ 1 < & < n. Each of the & «:'zes in the bisection will have to multiplex 2(n/k). We have to
'.-t"" preclude the possibility that the chip sorts n/k bits in each group and sends them in that ord or,
::3:; thus making the long wires switch only once. The following lemma shows that, on average, a

1

n/k bit sequence has about n/2k bit alternations. We assume that the sequencing of tle bits
in a n/k bits group is oblivious to the value of the input bits. We say that in a bit sequence
ai,az,...,a there is an alternation at the position j if aj #aj4y for1 < j<1-1, 1,6
it equals 1 if a; # aj4; and 0 otherwise. The total alternation for a I-bit sequence is given by

f i .
g.: =1 51-
01

Lemma 2 The average total alternation for a k-bit sequence from the set {0,1}% is (k- 1)/2.

o)

t:;: PROOF SKETCH: Let the total alternation summed up over all the bit sequences in {0, 1}* be
R denoted by A(k). A(k) is given by the following recurrence.

Li:n

i‘ A(k) = 2A(k-1) + 25% 4(1) = o;

9l This equation has a solution in A(k) = (k — 1)2¥=!. Averaged over 2* k-bit sequences in
f:* {0,1}*, we get an average total alternation of (k-1)/2.

£,

h::, a
i By the preceding lemma, each of k edge disjoint paths will switch 2(n/k) times. The
: following theorem shows that most of the area will switch every time.

| Theorem 3 The average switching energy of a normal transitive function computed by a cir-

cuit of bisection width k is bounded from below by 2(kn + n?/k).

~ Proor SKETCH: The proof to show that f2(k?) switching takes place at each time step is
"', exactly similar to the proof of Theorem 2. When & is O(1), just the storage requirements give
::_. 2(n) < vitching energy. This adds up to £2(k? + n) switching energy at each step. Lemma 2
o assures . “t there will be 2(n/k) time steps due to band width limitations. The lower bound

»

of 2(kn + n?/k) is given by multiplying the lower bounds on area and time steps derived
above.

C

The lower bound on the average switching energy of a normal transitive function derived
in Theorem 3 attains a minimum of n32 when the band width is /7.

SRR [INAFIIIN] |

i T
-

4 Energy Complexity of Transitive Systolic Systems

W TeF

In this section, by Transitive Systolic System we will refer to a system
"
. e that is systolic.
v
“ ¢ which computes a transitive function.
%
o

SAM A1 8 4%) e e o o L T g
T D [> e P b b A T P s T

54

i There are many versions of what it means for an algorithm to be systolic. We attempt to
! capture most of the commonly accepted characteristics of a systolic system in the following
- L] . .

5 discussion.

'(':'

A

ff_ 1. regular structures: The most distinguishing characteristic of systolic systems is their
ﬁ regular structure. This makes them very suitable for VLSI implementations.

..:g 2. few neightors: Each processing unit has a constant number of neighbors, which is inde-
4 pendent of the input size n.

o

"

) - : . .

) 3. pipeline: These structures are capable of supporting a pipeline of input data at a regular

pipeline period. Without loss of generality, we assume that at each time unit, a systolic
system produces an output bit for each output data stream. The bubbles in a stream can
be accommodated by defining a larger clock tick, within which the system is internally

2,

Ny
o o
2

- introducing these bubbles. Alternatively, one could distinguish between bit systolic and
-.:.‘_; word systolic systems. A systolic system is word systolic if it produces a word of output
o . «
at each clock tick. Similarly, a systolic system is bit systolic 1f it produces a bit of an
output word at each clock tick. We insist on word systolicity.
:_1 4. distribution of streams: The input and output data streams should be evenly distributed
ot around the periphery. This requirement is imposed by our desire to be able to use this
‘g\% structure in a larger system with compact routing. In an extreme case, if all the input
and output data streams were tapped from the same convex side of the system, chances
. are that there will be a pitch mismatch between I/O side of this unit and I/O sides of
¥ other units overlayed together.
"
W 5. nonzero delay: Each stream has delay at least one in each processor.
We briefly describe what a transitive function is. We borrow the notation from Vuillemin
A [10].
;-": Definition 8 A boolean function f(z,,z2,...,Zn,€1,€2y...,¢k) = (V1,Y25---,Yn) is said to be
] o e .
::\:, transitive if:
i 1. For each value of the control input bits ¢y, ca,...,ck the output vector (Y1, ¥2,...,Yn) 18
the permuted input vector (zy(1), Tg(2),- -+ Tg(n)), Where the permutation g is determined
E.ﬁ by the control bits.
E;“ 2. The set of elements g forms a transitive permutation group.
: 3. For each pair (i, j) of indez positions, 1 < i,j < n, there ezxists a permutation m, such
that * maps i into j, ie., (i) = j.
'¥~‘
-::‘, The main property of transitive functions is that each output bit depends on each input
'}‘f: bit. Note that this makes transitive functions more restrictive than the functions for which

3

each output value depends un each input value.
A systolic system may not exist for every transitive function. A function could be arbitrarily
complex and still be transitive. An example is the union of a nonrecursive function and

S

-
=

vy shift function, which is not even solvable. But, it still embeds an instance of a transitive
'ﬁ computation. This result applies to only those transitive functions that are simple enough to
-\ have a systolic algorithm.

W Before we go any further, we develop some notation. A data stream is said to be an

input(output) data stream if the flow of data through this stream is into(out of) the system.
Each input stream is incident on two convex faces of the convex embedding of the system. For
a stream D, let IF(D) denote the input face and let O F(D) denote the output face.

<

o S

=4

Y

1.‘:1:—(...

‘

-~

T e e M R L T AT R i T R LA 0 L £ 0 D T Ca Tl e e S 4 0 U TG Dt W Wt el A LR A

Definition 7 A description of a data stream D, des(D), is a list wo pe; wy ... pe;w; ... pen Wn
of alternating wire segments and processors, such that wire scgment w;_, is incident into and
wire segment w; is incident out of the processor pe;.

s

.

I's

£ %

5 T e oy

Definition 8 An input data stream D; is said to dominate an output data strcam D,, denoted
by D; v D,, if both D; and D, are incident on a processor where bits in D; are input to the
computation of bits of D,.

-

-

_‘E: Lemma 3 For a transitive systolic function, evcry input data stream dominates every output

: data stream.

“

) REMARK 1: The description of a data stream D, des(D) has a processor, wire segment pair
(pj, w;j), for every output data stream OD; that D dominates.

-

t-j Definition 9 The span of an input data stream is defined to be the number of output data

by streams it dominates.

X

i Lemma 4 In a transitive systolic system, when an input bit is switched, 2(n) switching energy

- is consumed.

E: PROOF SKETCH: Let us consider any input data stream, ID;. Let E; be the switching energy

e consumed when the data stream I D; switches. We know from Lemma 3 that ID; dominates

- each output data stream OD; for 1 < j < m. As we mentioned in Remark 1, this implies that
des(1D;) has a processor, wire segment pair (p;, w;) for each of the output data streams OD;.

3 Thus, des(ID;) has at least m = £2(n) wire segments.

> According to our model, each wire segment has length £2(1). Each wire segment wy, when

T switched, consumes e = £2(1) energy. When the input stream ID; switches, each of the wire

.j: segments wy in its description des(ID;) will switch. Thus, E;, the energy consumed when ID;

. switches is £2(3"y, edes(1D,) €4)- Since each ey is at least constant and des(ID;) has 2(n) wire

2 segments, E; is 12(n).

]

j Now we will prove a series of lemmas that lead us to our main theorem. In what follows, n
i is the number of input bits and m is the number of the output bits for the transitive function
under discussion.

Lemma 5 For a transitive systolic system, no input data stream can multiplez o(k) input bit
positions, for a constant c.

Proor SKETCH: The proof is based on the fact that for computing any output bit in a
transitive function, every input bit is required. Each output bit requires n input bits. Thus

.
S i

3 each input data stream should provide one bit at each clock tick.

] O
i\ The key idea on which the proof of main theorem hinges, is that the area of a transitive
} systolic system is @(m X n). Since m is @(n), this means that 4 is @(n?). We first show that
"

4 Ais 2(m X n).

j Lemma 6 The area A of a transitive systolic system is bounded from below by £2(m x n).

| PRrooF SKETCH: Notice that in any systolic system, no output bit stream can be multiplexed.
i Otherwise, there will be a constant buildup of information within the system. None of it can
.

)

be discarded, since a transitive function needs it all. By Lemma 4, for a transitive function
every input stream has a span of 2(m). Thus each input stream induces wire length of 2(m)
in the system. By Lemma 5, there are at least £2(n) such wires. This proves the result.

"’l"& & . § SEEEEN . X B ¥ .m B

e A RN DT T R e A A T R e e e TR N O T R R T AT LT T LN T L b MR M WY NS

AL A

e e o

A

B T e

B -
X

e

.,

Y
g
“

X

W
it

e

Now we are ready to show that 4 is O(m x n).
Lemma 7 For transitive systolic functions, the area A of the system embedding is O(m x n).

ProoOF SKETCH: If a systolic system exists for a function, then an equivalent one can be
realized as in the schema shown in Figure 1. The size of each processor P is a constant p. If
it were not, then the system would not be systclic. Since the number of input bits and output
bits is a constant, there is only a finite number of Boolean functions realizable. Fach of these
functions can be realized in constant area. This proves the result.

O

Theorem 4 For transitive systolic systems, the average energy consumption is of the same
order as the worst case energy consumption.

PROOF SKETCH: Let C = (V,W) be the circuit to realize a transitive function f with a systolic
algorithm. The worst case (state, input) combination can make all of the area switch. Thus
E.(C)is O(A).

For a uniform distribution, each input bit z; to the circuit can switch independently. The
probability that a bit z; switches P[z; switches] = P[z; goes 0 — 1] + P[z; goes 1 — 0] = 1/2.
Thus the expected number of input bits switching is n/2. By Lemma 4 each switched input
bit consumes £2(n) energy. Thus a lower bound on E,(C) is £2(n?). From Lemmas 6 and 7,
area A is ©(n?). This shows that E4(C) is £2(4) and E,(C) is O(A).

0

In the next section, we demonstrate this result with an example of a multiplier circuit. This
algorithm is due to Wayne Winder of the VLSI Consortium at the University of Washington.
This algorithm is of independent interest too, since it achieves the lower bound of n2 on AP?
for multiplication, as shown by Vuillemin [10].

4.1 A Multiplier Example

This multiplier is based on the basic shift and add paradigm of multiplication. The multiplica-
tion algorithm that we all learnt in grade school is shown in Figure 2. If instead of writing row
i shifted left by i — 1 for 1 < i < m, we wrote them all aligned, we will get this multiplication
scheme. Each cell (i, j) receives a carryin from its north neighbor and a sum bit s; from its
northwest neighbor. It sends out the sum of b; x a;, s; and the carryin to its southeast neigh-
bor, and carryout to its south neighbor. The last row is an exception. To get output bits ¢, /,
on the right, we have an adder that sums up previous carrys with the sum bits. We can use an
adder proposed by Brent and Kung [2]. This adder propagates the carry in time O(logn) and
with width O(n) and height O(logn). When pipelined, the adder has a period of O(1). Thus
the whole multiplier has area O(n?) and it works at a pipeline period of @(1). Thus its AP?
is O(n?). Note that each input data stream has a total wire length equal to £2(n). On average
half the input bits switch, giving us a an avarage case energy consumption of £2(n?). The area
of this circuit is @(n?). The worst case switching energy is bounded by O(A). This shows
that this multiplier indeed consumes the same order of average case and worst case switching
energy.

")'brk)‘

P Ve B B NS0, o S TS TR YT S Sy TR BT B X, b Al A
AR Ghh).){"}_;‘.m{i-‘\:-l‘n\‘.-l\.\sf‘vr._‘\.‘p'*»‘f“-'{*-‘\:'-i.\-“,.f'. .\.',{u{-ﬁ:i " «.‘“. ~.\ 4.‘ R .\,.\..1* s _W.{d f‘uﬁ o

-

WD

4.2 CFL Example

e

Just to demonstrate that it is not always true, we separate the average and worst case energy
consumptions of a systolic implementation for recognizing a context free language L = {ww}u
{1{0,1}*}. We refer to the systolic implementation of Guibas, Kung and Thompson [3]. In the
worst case, a string of the form ww® where w € {0, 1}" dominates with an cnergy complexity
of n?. In the average case, though, the strings of the form 1{0, 1}*~! dominate, since there are
22n=1 _ 9" of them compared to 2" of ww® kind.

= e

W s A Y B -
e e R

Ibn-1 IDn

oD1

0D2

1 1 0 1
1 0 0
N o N
carryin \E I‘E: "&\‘\E\"\
- YR O QRQY
0
QN

\1\\ J\ .
e NN NN

Figure 2: The Multiplication Algorithm

Figure 1: The Systolic System Schema

5 Lower Bounds

LA R R Y el SE VS PELIPLES i Snunl ot S R g, PR BN SN S
[+]
¥
1]
1

In this section, we extend the lower bound result of Kissin [4]. She shows that to compute a 1-
switchable function in depth O(log n), worst case switching energy of £2(nlogn) must be used.
The assumption is that the output nodes are placed on a convex border in the embedding. We
show that if the depth can be relaxed to be a polynomial in n, i.e., d(n) = n¢ for 0 < € < 1, then
area X depth = £2(max(nlogn, n'*)). Similarly, if the depth is polylog, i.e., d(n) = log*n for
k > 2, then area X depth = £2(n log¥n). These lower bounds hold under the assumptions that
in an embedding of the circuit C the output nodes are located on a convex border and the fan
out is limited to two.

Next, we will define 1-switchable functions. A function f is 1-switchable if there is an input
bit position on which every output bit depends. A formal definition follows.

g N L

-t ¥ L B T Al k]

Definition 10 A function f : {0,1}" — {0,1}™, with m = O(n), is said to be 1-switchable
if there exist two input vectors @ = z122...2...2, and b = 217, ... Tk ... T, differing only in
one bit position, such that ©(n) output bits switch from f(&@) to f(b). .

Note that the class of transitive functions forms a subset of the class of 1-switchable func-
tions. Thus all the lower bounds that we derive also apply to transitive functions.

Our basic problem is to fan out the input bit z; to @(n) output bit positions. If we
restrict the depth for this fan out, then we can place lower bounds on the sum of the lengths
of the edges in a Cartesian grid embedding. We limit ourselves to the embeddings (underlying
communication graphs) with fan out of at most 2 for every vertex. Our strategy will be to first
show that any efficient fan out graph will be in a canonical form, which we call balanced fan
out graph. Then we show a lower bound on the area of any embedding for this graph, given a

e R TGRSR RSN R R TEN .

SRR o Y e M T O W S o Wb 7 e T YN M T P T PN T ™ T T P T P P DI T [P [T T TR0 2 o]) L A8 L

R .

S & ke KK SR N

.

AR XN K X A AT RN kK D b KNSR

AN P

e

B e Riy gib iy S e G]SS I S e e R R R e D S A e

A

2w 8 e M i

T2
A

o

A H Y

o

£

s
A

certain depth. Note that since we are working with the unit delay model, depth corresponds
to delay in the given function. A wire can be driven in unit time regardless of its length.

Definition 11 Let G = (V, E) be a directcd, rooted graph. Let vo € V' be the designated input
node and Vo C V be a designated set of output nodes Then F = (V, E,vg, Vo) is said to be a
fan out graph if there ezists a directed path in G from vy to each v, € Vp.

We limit ourselves to only those embeddings in which the output nodes are located at a
convex border. Without loss of generality, we can assume that all the output nodes are located
along a straight line. This blows up the area at most by a constant f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>